Deformation Texture of Body-Centered Cubic Metal Wires
نویسندگان
چکیده
منابع مشابه
Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation
Nanocrystalline nc materials are known to deform via mechanisms not accessible to their coarse-grained counterparts. For example, deformation twins and partial dislocations emitted from grain boundaries have been observed in nc Al and Cu synthesized by severe plastic deformation SPD . This paper further develops an earlier dislocation-based model on the nucleation of deformation twins in nc fac...
متن کاملRotation-limited growth of three-dimensional body-centered-cubic crystals.
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase ...
متن کاملBody-centered-cubic Ni and its magnetic properties.
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x...
متن کاملA Line Generation Algorithm over 3D Body-centered Cubic Lattice
New line generation algorithm is proposed for generating lines over 3D body-centered cubic lattice, a kind of optimal lattice in 3D space. The main contribution in this paper is employing the 3D Bresenham algorithm, a popular algorithm for generating 3D lines on a cubic lattice, to produce the BCC lattice occupied by 3D lines, with the help of the adjunct parallelepiped space, having the same c...
متن کاملGrain boundary energies in body-centered cubic metals
Atomistic simulations using the embedded atom method were employed to compute the energies of 408 distinct grain boundaries in bcc Fe and Mo. This set includes grain boundaries that have tilt, twist, and mixed character and coincidence site lattices ranging from R3 to R323. The results show that grain boundary energies in Fe and Mo are influenced more by the grain boundary plane orientation tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOM
سال: 1951
ISSN: 1047-4838,1543-1851
DOI: 10.1007/bf03397380